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a b s t r a c t

Westudy the problemof one-dimensional partitioning of nonuniformworkload arrays,with optimal load
balancing for heterogeneous systems.We look at two cases: chain-on-chain partitioning, where the order
of the processors is specified, and chain partitioning,where processor permutation is allowed.Wepresent
polynomial time algorithms to solve the chain-on-chain partitioning problem optimally, while we prove
that the chain partitioning problem is NP-complete. Our empirical studies show that our proposed exact
algorithms produce substantially better results than heuristics, while solution times remain comparable.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction

In many applications of parallel computing, load balancing is
achieved by mapping a possibly multi-dimensional computational
domain down to a one-dimensional (1D) array, and then partition-
ing this array into parts with equal weights. Space filling curves
are commonly used to map the higher dimensional domain to a
1D workload array to preserve locality and minimize communi-
cation overhead after partitioning [5,6,9,15]. Similarly, processors
can be mapped to a 1D array so that communication is relatively
faster between close processors in this processor chain [10]. This
easesmapping for computational domains and improves efficiency
of applications. The load balancing problem for these applications
can be modeled as the chain-on-chain partitioning (CCP) problem,
wherewemap a chain of tasks onto a chain of processors. Formally,
the objective of the CCP problem is to find a sequence of P − 1
separators to divide a chain of N tasks with associated computa-
tionalweights into P consecutive parts tominimizemaximum load
among processors.

In our earlier work [17], we studied the CCP problem
for homogenous systems, where all processors have identical
computational power. We have surveyed the rich literature on
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this problem, proposed novel methods as well as improvements
on existing methods, and studied how these algorithms can
be implemented efficiently to be effective in practice. In this
work, we investigate how these techniques can be generalized
for heterogeneous systems, where processors have varying
computational powers. Two distinct problems arise in partitioning
chains for heterogeneous systems. The first problem is the CCP
problem, where a chain of tasks is to be mapped onto a chain of
processors, i.e., the pth task subchain in a partition is assigned to
the pth processor. The second problem is the chain partitioning
(CP) problem, where a chain of tasks is to be mapped onto a
set, as opposed to a chain, of processors, i.e., processors can be
permuted for subchain assignments. For brevity, the CCP problem
for homogenous systems and heterogeneous systems will be
referred to as the homogenous CCP problem and heterogeneous
CCP problem, respectively. The CP problem refers to the chain
partitioning problem for heterogeneous systems, since it has no
counterpart for homogenous systems.

In this article,we show that the heterogeneous CCPproblemcan
be solved in polynomial time, by enhancing the exact algorithms
proposed for the solution of the homogenous CCP problem [17].
We present how these exact algorithms for homogenous systems
can be enhanced for heterogeneous systems and implemented effi-
ciently for runtime performance. We also present how the heuris-
tics widely used for the solution of homogenous CCP problem can
be adapted for heterogeneous systems. We present the imple-
mentation details and pseudocodes for the exact algorithms and
heuristics for clarity and reproducibility. Our experiments with
workload arrays coming from image-space-parallel volume
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rendering and row-parallel sparse matrix vector multiplication
applications show that our proposed exact algorithms produce
substantially better results than the heuristics, while the solution
times remain comparable. On average, optimal solutions provide
4.9 and 8.7 times better load imbalance than heuristics for 128-
way partitionings of volume rendering and sparse matrix datasets,
respectively. On average, the time it takes to compute an optimal
solution is less than 2.20 times the time it takes to compute an
approximation using heuristics for 128 processors, and thus the
preprocessing times can be easily compensated by the improved
efficiency of the subsequent computation even for a few iterations.

The CP problem on the other hand, is NP-complete as we prove
in this paper. Our proof uses a pseudo-polynomial reduction from
the 3-Partition problem, which is known to be NP-complete in
the strong sense [7]. Our empirical studies showed that processor
ordering has a very limited effect on the solution quality, and an
optimal CCP solution on a random processing ordering serves as
an effective CP heuristic.

The remainder of this paper is organized as follows. Table 1
summarizes important symbols used throughout the paper.
Section 2 introduces the heterogeneous CCP problem. In Section 3,
we summarize the solution methods for homogenous CCP. In
Section 4, we discuss how solution methods for homogenous
systems can be enhanced to solve the heterogeneous CCP problem.
In Section 5, we discuss the CP problem, prove that it is NP-
Complete. We present the results of our empirical studies with
the proposed methods in Section 6, and finally, we conclude with
Section 7.

2. Chain-on-chain (CCP) problem for heterogeneous systems

In the heterogeneous CCP problem, a computational problem,
which is decomposed into a chain T = 〈t1, t2, . . . , tN〉 of
N tasks with associated positive computational weights W =

〈w1, w2, . . . , wN〉 is to be mapped onto a processor chain P =

〈P1, P2, . . . , PP〉 of P processorswith associated execution speeds
E = 〈e1, e2, . . . , eP〉. The execution time of task ti on processor
Pp is wi/ep. For clarity, we note that there are no precedence
constraints among the tasks in the chain.

A task subchain Ti,j = 〈ti, ti+1, . . . , tj〉 is defined as a subset
of contiguous tasks. Note that Ti,j defines an empty task subchain
when i > j. The computational weight of Ti,j is Wi,j =

∑
i≤h≤j wh.

A partitionΠ shouldmap contiguous task subchains to contiguous
processors. Hence, a P-way partition of a task chain with N tasks
onto a processor chainwith P processors is described by a sequence
Π = 〈s0, s1, . . . , sP〉 of P + 1 separator indices, where s0 = 0 ≤

s1 ≤ · · · ≤ sP = N . Here, sp denotes the index of the last task
of the pth part so that processor Pp receives the task subchain
Tsp−1+1,sp with loadWsp−1+1,sp/ep. The cost C(Π) of a partitionΠ is
determined by themaximum processor load among all processors,
i.e.,

C(Π) = max
1≤p≤P

{Wsp−1+1,sp

ep

}
. (1)

This C(Π) value of a partition is called its bottleneck value, and
the processor defining it is called the bottleneck processor. The CCP
problem is to find a partition Πopt that minimizes the bottleneck
value C(Πopt).

Similar to the task subchain, a processor subchain Pq,r =

〈Pq, Pq+1, . . . , Pr〉 is defined as a subset of contiguous processors.
Note that Pq,r defines an empty processor subchain when q > r .
The computational speed of Pq,r is Eq,r =

∑
q≤p≤r ep.

The ideal bottleneck value B∗ is defined as

B∗
=

Wtot

Etot
, (2)
where Etot is the sum of all processor speeds and Wtot is the total
task weight; i.e., Etot = E1,P and Wtot = W1,N . Note that B∗

can only be achieved when all processors are equally loaded, so
it constitutes a lower bound on the achievable bottleneck values,
i.e., B∗

≤ C(Πopt).

3. CCP algorithms for homogenous systems

The homogenous CCP problem can be considered as a special
case of the heterogeneous CCP problem, where the processors are
assumed to have equal speed, i.e., ep = 1 for all p. Here, we review
the CCP algorithms for homogenous systems. A comprehensive
review and presentation of homogenous CCP algorithms are
available in [17].

3.1. Heuristics

Possibly the most commonly used CCP heuristic is recursive
bisection (RB), a greedy algorithm. RB achieves P-way partitioning
through lg P levels of bisection steps. At each level, the workload
array is divided evenly into two. RB finds the optimal bisection at
each level, but the sequence of optimal bisections at each levelmay
lead to a multi-way partition which is far away from an optimal
one. Pınar and Aykanat [17] proved that RB produces partitions
with bottleneck values no greater than B∗

+ wmax(P − 1)/P .
Miguet and Pierson [12] proposed another heuristic that

determines sp by bipartitioning the task chain in proportion to the
length of the respective processor subchains. That is, sp is selected
in such away thatW1,sp/W1,N is as close to the ratio p/P as possible.
Miguet and Pierson [12] prove that the bottleneck value found by
this heuristic has an upper bound of B∗

+ wmax.
These heuristics can be implemented in O(N +P lgN) time. The

O(N) time is due to prefix-sum operation on the tasks array, after
which each separator index can be found by a binary search on the
prefix-summed array.

3.2. Dynamic programming

The overlapping subproblems and the optimal substructure
properties of the CCP problem enable dynamic programming
solutions. The overlapping subproblems are partitioning the first
i tasks onto the first p processors, for all possible i and p values. For
the optimal substructure property, observe that if the last processor
is not the bottleneck processor in an optimal partition, then the
partitioning of the remaining tasks onto the first P − 1 processors
must be optimal. Hence, the recursive definition for the bottleneck
value of an optimal partition is

Bp
i = min

0≤j≤i

{
max

{
Bp−1
j ,Wj+1,i

}}
. (3)

Here,Bp
i denotes the optimal solution value for partitioning the first

i tasks onto the first p processors. In Eq. (3), searching for index j
corresponds to searching for separator sp−1 so that the remaining
subchain Tj+1,i is assigned to the last processor in an optimal
partition. This definition defines a dynamic programming table
of size PN , and computing each entry takes O(N) time, resulting
in an O(N2P)-time algorithm. Choi and Narahari [2], and Manne
and Olstad [11] reduced the complexity of this scheme to O(NP)

and O((N − P)P), respectively. Pınar and Aykanat [17] presented
enhancements to limit the search space of each separator by
exploiting upper and lower bounds on the optimal solution value
for better practical performance.
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Table 1
The summary of important abbreviations and symbols

Notation Explanation

N Number of tasks
T Task chain, i.e., T = 〈t1, t2, . . . , tN 〉

ti ith task in the task chain
Ti,j Task subchain of tasks from ti upto tj , i.e., Ti,j = 〈ti, ti+1, . . . , tj〉
wi Computational load of task ti
wmax Maximum computational load among all tasks
wavg Average computational load of all tasks
wmin Minimum computational load of all tasks
Wi,j Total computational load of task subchain Ti,j
Wtot Total computational load, i.e.,Wtot = W1,N
P Number of processors
P Processor chain, i.e., P = 〈P1, P2, . . . , PP 〉 in the CCP problem

Processor set, i.e., P = {P1, P2, . . . , PP } in the CP problem
Pp pth processor in the processor chain
Pq,r Processor subchain from Pq upto Pr , i.e., Pq,r = 〈Pq, Pq+1, . . . , Pr 〉

ep Execution speed of processor Pp
Eq,r Total execution speed of processor subchain Pq,r
Etot Total execution speed of all processors, i.e., Etot = E1,P
B∗ Ideal bottleneck value, achieved when all processors have load in proportion to their speed
UB Upper bound on the value of an optimal solution
LB Lower bound on the value of an optimal solution
sp Index of the last task assigned to the pth processor
lg x base-2 logarithm of x, i.e., lg x = log2 x
3.3. Parametric search

Parametric search algorithms rely on two components: a
probing operation to determine if a solution exists whose
bottleneck value is no greater than a specified value, and a method
to search the space of candidate values. The probe algorithm can
be computed in only O(P lgN) time by using binary search on the
prefix-summed workload array. Below, we summarize algorithms
to search the space of bottleneck values.

3.3.1. Nicol’s algorithm
Nicol’s algorithm [14] exploits the fact that any candidate

B value is equal to the weight of a task subchain. A naive
solution is to generate all subchain weights, sort them, and
then use binary search to find the minimum value for which
a probe succeeds. Nicol’s algorithm efficiently searches for this
subchain by considering each processor in order as a candidate
bottleneck processor. For each processor Pp, the algorithm does
a binary search for the smallest index that will make Pp the
bottleneck processor. With the O(P lgN) cost of each probing,
Nicol’s algorithm runs in O(N + (P lgN)2) time.

Pınar and Aykanat [17] improved Nicol’s algorithm by utilizing
the following simple facts. If the probe function succeeds (fails) for
some B, then probe function will succeed (fail) for any B′

≥ (≤)B.
Therefore by keeping the smallest B that succeeded and the largest
B that failed, unnecessary probing is eliminated, which drastically
improves runtime performance [17].

3.3.2. Bidding algorithm
The bidding algorithm [16,17] starts with a lower bound and

proceeds by gradually increasing this bound, until a feasible
solution value is reached. The increments are chosen to beminimal
so that the first feasible bottleneck value is optimal. Consider the
partition generated by a failed probe call that loads the first P − 1
processors maximally not to exceed the specified probe value. To
find the next bottleneck value, processors bid with the bottleneck
value that would add one more task to their domain, and the
minimum bid among the processors is chosen to be the next
bottleneck value. The bidding algorithm moves each one of the P
separators forO(N) positions in theworst case,where choosing the
newbottleneck value takesO(lg P) timeusing apriority queue. This
makes the complexity of the algorithm O(NP lg P).
3.3.3. Bisection algorithms
The bisection algorithm starts with a lower and an upper

bound on the solution value and uses binary search in this
interval. If the solution value is known to be an integer, then the
bisection algorithm finds an optimal solution. Otherwise, it is an
ε-approximation algorithm, where ε is the user defined accuracy
for the solution. The bisection algorithm requires O(lg(wmax/ε))
probe calls, with O(N + P lgN lg(wmax/ε)) overall complexity.

Pınar and Aykanat [17] enhanced the bisection algorithm by
updating the lower and upper bounds to realizable bottleneck
values (subchain weights). After a successful probe, the upper
bound can be set to be the bottleneck value of the partition
generated by the probe function, and after a failed probe, the lower
bound can be set to be the smallest value that might succeed,
as in the bidding algorithm. These enhancements transform the
bisection algorithm to an exact algorithm, as opposed to an ε-
approximation algorithm.

4. Proposed CCP algorithms for heterogeneous systems

The algorithms we propose in this section extend the tech-
niques for homogenous CCP to heterogeneous CCP. All algorithms
discussed in this section require an initial prefix-sum operation on
the task-weight arrayW for the efficiency of subsequent subchain-
weight computations. The prefix-sum operation replaces the ith
entry W[i] with the sum of the first i entries (

∑i
h=1 wh) so that

computational weight Wij of a task subchain Tij can be efficiently
determined as W[j] − W[i − 1] in O(1) time. In our discussions,
W is used to refer to the prefix-summed W array, and O(N) cost
of this initial prefix-sum operation is considered in the complexity
analysis. Similarly, Ea,b can be computed in O(1) time on a prefix-
summed processor-speed array. In all algorithms, we focus only on
finding the optimal solution value, since an optimal solution can be
easily constructed, once the optimal solution value is known.

Unless otherwise stated, BINSEARCH represents a binary search
that finds the index to the element that is closest to the target
value. There are variants of BINSEARCH to find the index of the
greatest element not greater than the target value, and we will
state whenever such variants are needed. BINSEARCH takes four
parameters: the array to search, the start and end indices of the
sub-array, and the target value. The range parameters are optional,
and their absence means that the search will be performed on the
whole array.
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Fig. 1. Heterogeneous CCP heuristics.

4.1. Heuristics

We propose a heuristic, RB, based on the recursive bisection
idea. During each bisection, RB performs a two step process. First,
it divides the current processor chain Pp,r into two subchains Pp,q
and Pq+1,r . Then, it divides the current task chain Th,j into two
subchainsTh,i andTi+1,j in proportion to the computational powers
of the respective processor subchains. That is, the task separator
index i is chosen such that the ratio Wh,i/Wi+1,j is as close to the
ratio Ep,q/Eq+1,r as possible. RB achieves optimal bisections at each
level; however, the quality of the overall partitionmay be far away
from that of the optimal solution.

We have investigated two metrics for bisecting the processor
chain: chain length and chain processing power. The chain length
metric divides the current processor chain Pp,r into two equal-
length processor subchains, whereas the chain processing power
metric divides Pp,r into two equal-power subchains. Since the
first metric performed slightly better than the second one in our
experiments, we will only discuss the chain length metric here.
The pseudocode of the RB algorithm is given in Fig. 1, where the
initial invocation takes its parameters as (W, E, 1, P) with s0 = 0
and sP = N . Note that sp−1 and sr are already determined at
higher levels of recursion. Wtot is the total weight of current task
subchain, and Wfirst is the weight for the first processor subchain
in proportion to its processing speed. We need to add W1,sp−1 to
Wfirst to seek sq in the prefix-summed W array.

We also propose a generalization of Miguet and Pierson’s
heuristic, MP [12]. MP computes the separator index of each
processor by considering that processor as a division point for the
whole processor chain. In our version, the load assigned to the
processor chain P1,p is set to be proportional to the computational
power E1,p of this subchain, as shown in Fig. 1.

Both RB and MP can be implemented in O(N + P lgN) time,
where the O(N) time is due to the initial prefix-sum operation on
the task-weight array.

Below, we investigate the theoretical bounds on the quality of
these two heuristics. We assume P is a power of 2 for simplicity.

Lemma 4.1. BRB is upper bounded by B∗
+wmax/emin−wmax/(Pemin).

Proof. We use induction, and the basis is easy to show for P =

2. For the inductive step, assume the hypothesis holds for any
number of processors less than P . Consider the first bisection,
where the processors are split into two subchains, each containing
P/2 processors. Let the total processing power in the left subchain
be Eleft. RB will distribute the workload array between the left and
right processor subchains as evenly as possible. Therewill be a task
ti such that the left processor subchain will weigh more than the
right subchain if ti is assigned to the left subchain, and vice versa.
Without loss of generality, assume that ti is assigned to the left
subchain. In the worst case, ti is the maximum weighted task, and
the total task weight assigned to the left subchain, Wleft, can be
upper bounded by

Wleft ≤
(Wtot + wmax)Eleft

Etot
.

Using the inductive hypothesis, the bottleneck value among the
processors of the left processor subchain can be upper bounded as
follows.

BRB ≤
Wleft

Eleft
+

wmax

emin
−

wmax

eminP/2

≤
Wtot + wmax

Etot
+

wmax

emin
−

wmax

eminP/2

= B∗
+

wmax

Etot
+

wmax

emin
−

wmax

eminP/2

≤ B∗
+

wmax

eminP
+

wmax

emin
−

wmax

eminP/2

= B∗
+

wmax

emin
−

wmax

Pemin
.

The same bound applies to the right processor subchain directly by
the inductive hypothesis, since right processor subchain is already
underloaded. �

Lemma 4.2. BMP is upper bounded by B∗
+ wmax/emin.

Proof. Let the sequence 〈s0, s1, . . . , sP〉 be the partition con-
structed byMP. For a processor Pp, sp is chosen to be the separator
that best divides P1,p and Pp+1,P . Based on our discussion of bipar-
titioning quality in the proof of Lemma 4.1,W1,sp is bounded by

E1,pB∗
−

wmax

2
≤ W1,sp ≤ E1,pB∗

+
wmax

2
.

So, the load of processor p is upper bounded by

W1,sp − W1,sp−1

ep
≤

E1,pB∗
+ wmax/2 − E1,p−1B∗

+ wmax/2
ep

= B∗
+

wmax

ep
≤ B∗

+
wmax

emin
. �

4.2. Dynamic programming

The overlapping subproblems and the optimal substructure
properties of the homogenous CCP can be extended to the
heterogeneous CCP, and thus enabling dynamic programming
solutions. The recursive definition for the bottleneck value of an
optimal partition can be derived as

Bp
i = min

0≤j≤i

{
max

{
Bp−1
j ,

Wj+1,i

ep

}}
(4)

for the heterogeneous case. As in the homogenous case, Bp
i denotes

the optimal solution value for partitioning the first i tasks onto
the first p processors. This definition results in an O(N2P)-time DP
algorithm.

We generalize the observations of Choi and Narahari [2] to
develop an O(NP)-time algorithm for heterogeneous systems as
follows. Their first observation relies on the fact that the optimal
position of the separator for partitioning the first i tasks cannot
be to the left of the optimal position for the first i − 1 tasks, i.e.,
jpi ≥ jpi−1. Their second observation is that we need to advance
a separator index only when the last part is overloaded and can
stop when this is no longer the case, i.e., Bp−1

j ≥ Wj+1,i/ep. Then
an optimal jpi can be chosen to correspond to the minimum of
max{Bp−1

j ,Wj+1,i/ep} andmax{Bp−1
j−1 ,Wj,i/ep}. That is, the recursive

definition becomes:

Bp
i = max

{
Bp−1
jpi

,
Wjpi +1,i

ep

}
,

where jpi = argmin
jpi−1≤j≤i

{
max

{
Bp−1
j ,

Wj+1,i

ep

}}
.
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Fig. 2. DP algorithms for heterogeneous systems: (a) basic DP algorithm, and (b) DP algorithm (DP+) with static separator index bounding.
Fig. 3. Greedy PROBE algorithms for heterogeneous systems: (a) left-to-right, and
(b) right-to-left.

It is clear that the search ranges of separators overlap at only one
position, and thus we can compute all Bp

i entries for 1 ≤ i ≤ N in
only one pass over the task subchain. This reduces the complexity
of the algorithm to O(NP). Fig. 2(a) presents this algorithm.

In the homogenous case, Manne and Olstad [11] reduced the
complexity further to O((N − P)P), by observing that there is
no merit in leaving a processor empty, and thus the search for jpi
can start at p instead of 1. However, this does not apply to the
heterogeneous CCP, since itmight be beneficial to leave a processor
empty.

Alternatively, we propose another DP algorithm by extending
the DP+ algorithm (DP algorithm with static separator-index
bounding) of Pınar and Aykanat [17] for the heterogeneous
case. DP+ limits the search space of each separator to avoid
redundant calculation of Bp

i values. DP+ achieves this separator
index bounding by running left-to-right and right-to-left probe
functions with the upper and lower bounds on the optimal
bottleneck value.

We extend the probing operation to the heterogeneous case,
as shown in Fig. 3. In the figure, LR-PROBE and RL-PROBE denote
the left-to-right probe and right-to-left probe, respectively. These
algorithms not only decide whether a candidate value is a feasible
bottleneck value, but they also set the separator index (sp) values
for their greedy approach. In LR-PROBE, BINSEARCH (W, w) refers
to a binary search algorithm that searches W for the largest index
Fig. 4. Nicol’s algorithms for heterogeneous systems: (a) Nicol’s basic algorithm,
(b) Nicol’s algorithm (NICOL+) with dynamic bottleneck-value bounding.

m, such thatW1,m ≤ w. Similarly, in RL-PROBE, BINSEARCH (W, w)
searches W for the smallest indexm such thatW1,m ≥ w.

DP+, as presented in Fig. 2(b), uses Lemma 4.3 to limit the
search space of sp values.

Lemma 4.3. For a given heterogeneous CCP instance (W,N, E, P),
a feasible bottleneck value UB and a lower bound on the bot-
tleneck value LB; let the sequences Π1

= 〈h1
0, h1

1, . . . , h1
P〉,

Π2
= 〈l20, l21, . . . , l2P〉, Π3

= 〈l30, l31, . . . , l3P〉 and Π4
=

〈h4
0, h4

1, . . . , h4
P〉 be the partitions constructed by LR-PROBE(UB),

RL-PROBE(UB), LR-PROBE(LB) and RL-PROBE(LB), respectively. Then,
an optimal partition Πopt = 〈s0, s1, . . . , sP〉 satisfies SLp ≤ sp ≤ SHp

for all 1 ≤ p ≤ P, where SLp = max{l2p, l
3
p} and SHp = min{h1

p,

h4
p}.
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Fig. 5. Bidding algorithm for heterogeneous systems.

Fig. 6. Bisection algorithms for heterogeneous systems: (a) ε-approximation
bisection algorithm, (b) Exact bisection algorithm.

Proof. We know that any feasible bottleneck value is greater than
or equal to the optimal bottleneck value, i.e., UB ≥ Bopt. Consider
h1
p , which is the largest index such that the first h1

p tasks can be
partitioned over p processors without exceeding UB. Then sp > h1

p

implies Bopt > UB, which is a contradiction. So, sp ≤ h1
p . Since,

RL-PROBE is just the symmetric algorithm of LR-PROBE, the same
argument proves sp ≥ l2p .

Consider the optimal partition constructed by RL-PROBE(Bopt).
Since Bopt ≥ LB, by the greedy property of RL-PROBE, sp ≤ h4

p .
Assume sp < l3p for some p, then another partition obtained
by advancing the sp value to l3p does not increase the bottleneck
value, since the first l3p tasks are successfully partitioned over the
first p processors without exceeding LB and thus Bopt. An optimal
partition Πopt = 〈s0, s1, . . . , sP〉 satisfies l3p ≤ sp ≤ h4

p . �

The lower bound LB can be initialized to the optimal lower
bound when all processors are equally loaded as

LB = B∗
=

Wtot

Etot
. (5)

An upper bound UB can be computed in practice with a fast and
effective heuristic, and Lemma 4.1 provides a theoretically robust
bound as

UB = B∗
+

wmax

emin
−

wmax

Pemin
. (6)

4.3. Parametric search

Parametric search algorithms can be constructed with a PROBE
function (either LR-PROBE or RL-PROBE given in Fig. 3), and a
method to search the space of candidate values. Below,we describe
several algorithms to search the space of bottleneck values for the
heterogeneous case.

4.3.1. Nicol’s algorithm
We revise Nicol’s algorithms for heterogeneous systems as

follows. The candidate B values become task subchain weights
divided by processor subchain speeds. The algorithm starts with
searching for the smallest j so that probing with W1,j/e1 succeeds,
and probing with W1,j−1/e1 fails. This means W1,j−1/e1 < Bopt ≤

W1,j/e1, and thus in an optimal solution the probe function will
assign the first j tasks to the first processor if it is the bottleneck
processor, and the first j − 1 tasks to the first processor if not.
Then the optimal solution value is theminimum ofW1,j/e1 and the
optimal solution value for partitioning the remaining task subchain
Tj,N to the processor subchain P2,P , since any solution with a
bottleneck value less than W1,j/e1 will assign only the first j − 1
tasks to the first processor. Finding the j value requires lgN probes,
andwe repeat this search operation for all processors in order. This
version of Nicol’s algorithm runs in O(N + (P lgN)2) time. Fig. 4(a)
displays this algorithm.

4.3.2. Nicol’s algorithm with dynamic bottleneck-value bounding
By keeping the largest B that succeeded and the smallest B

that failed, we can improve Nicol’s algorithm, by eliminating
unnecessary probing. Let LB andUB represent the lower bound and
upper bound for Bopt, respectively. If a processor cannot update
LB or UB, that processor does not make any PROBE calls. This
algorithm, presented in Fig. 4(b), is referred to as NICOL+.

In the worst case, a processor makes O(lgN) PROBE calls. But,
as we will prove below, the number of probes performed by
NICOL+ cannot exceed P lg (1 + wmax/(Peminwmin)). This analysis
also improves known complexities of homogeneous version of the
algorithm. Lemma 4.4 describes an upper bound on the number of
probes performed by NICOL+ algorithm.

Lemma 4.4. The number of probes required by NICOL+ is upper
bounded by P lg (1 + (UB − LB) / (Pwmin)).

Proof. Consider the first step of the algorithm, where we search
for the smallest separator index that makes the first processor the
bottleneck processor. We can restrict this search in a range that
covers only those indices forwhich theweight of the first chainwill
be in the [LB,UB] interval. If there are n1 tasks in this range,NICOL+
will require lg n1 probes. This means that the [LB,UB] interval is
narrowed by at least (n1 − 1)wmin after the first step.

Let kp be the number of probes by the pth processor. Since kp
probes narrow the [LB,UB] interval by

(
2kp − 1

)
wmin, we have((

2k1 − 1
)
+

(
2k2 − 1

)
+ · · · +

(
2kP−1 − 1

))
wmin ≤ UB − LB,

and thus 2k1 +2k2 +· · ·+2kP−1 ≤
UB−LB
wmin

+P−1. The corresponding

total number of probes is
∑P−1

p=1 kp, which reaches its maximum
when

∑P−1
p=1 2

kp is maximum and k1 = k2 = · · · = kP−1 = k for
some k. In that case,

(P − 1)2k
≤

UB − LB
wmin

+ P − 1

and thus

k ≤ lg
(
1 +

UB − LB
wmin(P − 1)

)
.
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(a) Blunt Fin. (b) Combustion Chamber. (c) Oxygen Post.
Fig. 7. Visualization of direct volume rendering dataset workloads. Top: workload distributions of 2D task arrays. Bottom: histograms showing weight distributions of 1D
task chains.
(a) g7jac050sc. (b) Language. (c) mark3jac060.

(d) Stanford. (e) Stanford Berkeley. (f) torso1.
Fig. 8. Visualization of sparse matrix dataset workloads. Left: non-zero distributions of the sparse matrices. Right: histograms showing weight distributions of the 1D task
chains.
Table 2
Properties of the test set

Name No. of tasks N Workload
Total Per task
Wtot wavg . wmin wmax

Volume rendering dataset
blunt 20.6 K 1.9 M 90.95 36 171
comb 32.2 K 2.1 M 64.58 14 149
post 49.0 K 5.4 M 109.73 33 199
Sparse matrix dataset
g7jac050sc 14.7 K 0.2 M 10.70 2 149
language 399.1 K 1.2 M 3.05 1 11555
mark3jac060 27.4 K 0.2 M 6.22 2 44
Stanford 261.6 K 2.3 M 8.84 1 38606
Stanford_Berkeley 615.4 K 7.6 M 12.32 1 83448
torso1 116.2 K 8.5 M 73.32 9 3263
So, the total number of probes performed by NICOL+ is upper
bounded by:

P−1∑
p=1

kp ≤ (P − 1)k ≤ (P − 1) lg
(
1 +

UB − LB
wmin(P − 1)

)
< P lg

(
1 +

UB − LB
wminP

)
. �
Corollary 4.5. NICOL+ requires atmost P lg(1+wmax/(Peminwmin))

probes for heterogeneous, and P lg(1 + wmax/(Pwmin)) probes for
homogeneous systems.

NICOL+ runs in O(N + P2 lgN lg(1 + wmax/(Peminwmin))) time,
with the O(P lgN) cost of a PROBE call. In most configurations,
wmax/(eminwminP) is very small, and is O(1) if Pemin =
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Table 3
Percent load imbalance values for the processor speed range of 1–8 for the volume
rendering dataset

CCP instance Heuristics OPT
Name P RB MP

Blunt 32 0.27 0.31 0.08
64 0.62 0.78 0.16

128 1.35 2.07 0.32
256 2.94 4.67 0.64
512 7.27 10.96 1.27

1024 15.15 21.94 2.83
2048 36.90 49.23 4.99

Comb 32 0.17 0.24 0.06
64 0.44 0.63 0.11

128 1.11 1.60 0.23
256 2.38 3.63 0.45
512 5.42 7.97 0.92

1024 12.94 18.24 1.83
2048 26.61 41.66 3.64

Post 32 0.11 0.13 0.03
64 0.25 0.39 0.07

128 0.61 0.86 0.13
256 1.34 2.05 0.27
512 3.10 4.32 0.54

1024 6.59 9.21 1.09
2048 16.21 19.82 2.15

Table 4
Percent load imbalance values for the processor speed range of 1–8 for the sparse
matrix dataset

CCP instance Heuristics OPT
Name P RB MP

g7jac050sc 32 2.21 3.08 0.40
64 4.88 6.06 0.75

128 12.21 17.16 1.52
256 29.06 42.86 3.10
512 84.54 90.48 6.60

1024 171.47 289.02 13.59
2048 261.51 624.91 30.96

Language 32 4.58 4.93 0.21
64 22.60 23.06 0.40

128 42.06 71.35 1.25
256 98.08 184.87 35.81
512 230.49 379.11 171.98

1024 527.56 1173.23 443.95
2048 1191.77 2294.59 992.35

mark3jac060 32 0.32 0.54 0.08
64 0.87 1.01 0.17

128 2.09 2.75 0.36
256 5.98 6.90 0.69
512 15.47 18.17 1.36

1024 30.23 51.57 2.89
2048 64.50 127.93 5.92

Stanford 32 12.91 22.85 2.46
64 42.77 84.14 5.38

128 110.83 274.42 21.32
256 204.46 617.98 138.66
512 435.52 1058.28 377.97

1024 1009.58 2585.17 855.91
2048 1978.18 5313.99 1819.63

Stanford_Berkeley 32 10.76 16.91 1.40
64 49.53 57.69 3.29

128 89.68 177.24 8.19
256 160.39 375.68 57.31
512 315.61 761.14 215.05

1024 624.98 1911.41 530.08
2048 1248.18 3949.65 1165.31

torso1 32 1.74 2.15 0.45
64 3.82 4.91 0.91

128 8.75 10.30 1.84
256 22.46 31.18 3.69
512 31.68 75.51 7.48

1024 75.55 75.89 17.86
2048 252.44 252.44 27.61
Table 5
Percent load imbalance values for different processor speed ranges for the volume
rendering dataset

CCP instance 1–4 1–8 1–16
Name P RB OPT RB OPT RB OPT

Blunt 32 0.21 0.08 0.27 0.08 0.38 0.08
64 0.39 0.16 0.62 0.16 0.93 0.16

128 1.06 0.31 1.35 0.32 2.21 0.31
256 2.19 0.64 2.94 0.64 5.54 0.64
512 4.62 1.27 7.27 1.27 11.57 1.25

1024 10.83 2.70 15.15 2.83 26.88 2.61
2048 22.43 4.93 36.90 4.99 52.25 5.42

Comb 32 0.12 0.06 0.17 0.06 0.22 0.06
64 0.35 0.11 0.44 0.11 0.72 0.11

128 0.77 0.23 1.11 0.23 1.65 0.23
256 1.58 0.45 2.38 0.45 3.78 0.45
512 3.53 0.91 5.42 0.92 9.61 0.91

1024 7.71 1.82 12.94 1.83 19.75 1.83
2048 17.53 3.67 26.61 3.64 44.69 3.64

Post 32 0.07 0.03 0.11 0.03 0.17 0.03
64 0.18 0.07 0.25 0.07 0.40 0.07

128 0.40 0.14 0.61 0.13 0.91 0.13
256 0.87 0.27 1.34 0.27 2.25 0.27
512 1.88 0.54 3.10 0.54 4.66 0.54

1024 4.41 1.09 6.59 1.09 11.42 1.08
2048 8.87 2.26 16.21 2.15 26.87 2.16

Geometric averages over P 32 0.12 0.05 0.17 0.05 0.24 0.05
64 0.29 0.11 0.41 0.11 0.65 0.11

128 0.69 0.21 0.97 0.21 1.49 0.21
256 1.44 0.43 2.11 0.43 3.61 0.43
512 3.13 0.86 4.96 0.86 8.03 0.85

1024 7.17 1.75 10.89 1.78 18.23 1.73
2048 15.16 3.45 25.15 3.39 39.73 3.49

Ω(wmax/wmin). In that case, the runtime complexity of NICOL+
reduces to O(N + P2 lgN).

4.3.3. Bidding algorithm
For heterogeneous systems, the bidding algorithm uses the

lower bound given in Eq. (5) for optimal bottleneck value, and
gradually increases this lower bound. The bid of each processor
Pp, for p = 1, 2, . . . , P − 1, is calculated as Wsp−1+1,sp+1 / ep,
which is equal to the load of Pp if it also executes the first task
of Pp+1 in addition to its current load. Then, the algorithm selects
the processor with the minimum bid value so that this bid value
becomes the next bottleneck value to be considered for feasibility.
The processors following the bottleneck processor in the processor
chain are processed in order, except the last processor. The
separator indices of these processors are adjusted accordingly so
that the processors are maximally loaded not to exceed that new
bottleneck value. The load of the last processor determines the
feasibility of the current bottleneck value. If current bottleneck
value is not feasible, the process repeats. Fig. 5 presents the bidding
algorithm, which uses a min-priority queue that maintains the
processors keyed according to their bid values. In the figure, BUILD-
HEAP, EXTRACT-MIN, INCREASE-KEY and DECREASE-KEY functions
refer to the respective priority queue operations [3].

In the worst case, the bidding algorithmmoves P separators for
O(N) positions. Choosing a newbottleneck value takesO(lg P) time
using a binary heap implementation of the priority queue. In total,
the complexity of the algorithm is O(NP lg P) in the worst case.
Despite this high worst-case complexity, the bidding algorithm is
quite fast in practice.

4.3.4. Bisection algorithm
For heterogeneous systems, the bisection algorithm can use

the LB and UB values given in Eqs. (5) and (6). A binary search
on this [LB,UB] interval requires O(lg(wmax/(εEtot))) probes, thus



A. Pınar et al. / J. Parallel Distrib. Comput. 68 (2008) 1473–1486 1481
Table 6
Percent load imbalance values for different processor speed ranges for the sparse matrix dataset

CCP instance 1–4 1–8 1–16
Name P RB OPT RB OPT RB OPT

g7jac050sc 32 1.22 0.37 2.21 0.40 2.53 0.40
64 3.53 0.79 4.88 0.75 6.96 0.76

128 8.94 1.57 12.21 1.52 16.15 1.52
256 19.62 3.18 29.06 3.10 65.36 3.16
512 42.24 6.62 84.54 6.60 104.54 6.68

1024 124.82 14.92 171.47 13.59 162.21 13.56
2048 307.43 32.67 261.51 30.96 261.88 30.02

Language 32 0.36 0.05 4.58 0.21 1.39 0.10
64 14.09 0.41 22.60 0.40 6.57 0.22

128 51.77 1.01 42.06 1.25 22.46 1.39
256 102.08 52.24 98.08 35.81 99.07 27.82
512 257.83 203.88 230.49 171.98 232.00 156.36

1024 554.09 506.99 527.56 443.95 519.77 415.09
2048 1210.34 1115.84 1191.77 992.35 1088.49 933.33

mark3jac060 32 0.27 0.08 0.32 0.08 0.40 0.08
64 0.68 0.17 0.87 0.17 1.17 0.16

128 1.67 0.34 2.09 0.36 3.15 0.35
256 4.15 0.69 5.98 0.69 10.32 0.69
512 8.82 1.38 15.47 1.36 22.87 1.40

1024 20.17 2.85 30.23 2.89 49.73 2.82
2048 41.26 5.82 64.50 5.92 111.65 5.68

Stanford 32 16.93 2.53 12.91 2.46 20.07 2.61
64 42.61 5.93 42.77 5.38 48.28 4.88

128 122.92 32.98 110.83 21.32 90.44 17.79
256 219.75 167.53 204.46 138.66 215.16 124.62
512 466.32 434.02 435.52 377.97 427.96 350.50

1024 1019.25 966.68 1009.58 855.91 956.15 805.19
2048 2131.61 2036.65 1978.18 1819.63 1935.93 1715.91

Stanford_Berkeley 32 7.14 1.29 10.76 1.40 15.32 1.44
64 26.91 2.51 49.53 3.29 43.39 3.29

128 85.08 8.96 89.68 8.19 74.51 8.02
256 191.93 76.34 160.39 57.31 146.90 48.06
512 331.15 251.99 315.61 215.05 316.54 196.95

1024 622.85 603.10 624.98 530.08 584.74 496.65
2048 1339.44 1308.36 1248.18 1165.31 1261.41 1096.94

torso1 32 1.01 0.46 1.74 0.45 1.91 0.45
64 2.50 0.89 3.82 0.91 4.64 0.88

128 5.82 1.72 8.75 1.84 14.14 1.85
256 10.03 3.49 22.46 3.69 22.75 3.73
512 16.01 5.37 31.68 7.48 65.98 8.26

1024 40.87 13.12 75.55 17.86 186.70 15.92
2048 96.14 38.26 252.44 27.61 231.35 32.85

Geometric averages over P 32 1.57 0.36 3.04 0.47 3.06 0.42
64 6.78 0.94 9.59 0.97 8.97 0.86

128 18.99 2.55 21.30 2.45 21.85 2.41
256 38.99 13.12 48.21 11.44 60.30 10.51
512 78.70 32.11 104.64 31.31 130.58 30.67

1024 181.87 74.04 225.17 72.17 275.55 68.26
2048 401.91 166.92 481.94 148.31 511.84 146.37
leading to an O(lg(wmax/(εEtot))P lgN)-time algorithm, where ε is
the specified accuracy of the algorithm. Fig. 6(a) presents this ε-
approximation bisection algorithm.We should note that, although
the homogenous version of this algorithm becomes an exact
algorithm for integer-valued workload arrays by setting ε = 1,
this is not the case for heterogeneous systems.

We enhance this bisection algorithm to be an exact algorithm
for heterogeneous systems, by extending the scheme proposed
by Pınar and Aykanat [17] for homogenous systems. After each
probe, we move lower and upper bounds to realizable bottleneck
values, as opposed to the probed value. In heterogeneous
systems, realizable bottleneck values are subchainweights divided
by appropriate processor speeds. After a successful probe, we
decrease UB to the bottleneck value of the partition constructed by
the probe, and after a failed probe we increase LB to the bid value
as described for the bidding algorithm in Section 4.3.3. Each probe
eliminates at least one candidate bottleneck value, and thus the
bisection algorithm terminates in a finite number of steps with an
optimal solution. Fig. 6(b) displays the exact bisection algorithm.
5. Chain Partitioning (CP) problem for heterogeneous systems

In this section, we study the problem of partitioning a chain
of tasks onto a set of processors, as opposed to a chain of
processors. The solution to this problem is not only separators on
the task chain, but also processor-to-subchain assignments. Thus,
we define a mapping M as a partition Π = 〈s0 = 0, s1, . . . , sP =

N〉 of the given task chain T = 〈t1, t2, . . . tN〉 with sp ≤ sp+1 for
0 ≤ p < P , and a permutation 〈π1, π2, . . . , πP〉 of the given set of
P processors P = {P1, P2, . . . , PP}. According to this mapping,
the pth task subchain 〈tsp−1+1, . . . , tsp〉 is executed on processor
Pπp . The cost C(M) of a mapping M is the maximum subchain
computation time, determined by the subchain weight and the
execution speed of the assigned processor, i.e.,

C(M) = max
1≤p≤P

{Wsp−1+1,sp

eπp

}
.

We will prove that the CP problem is NP-complete. The decision
problem for the CP problem for heterogeneous systems is as
follows.
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Table 7
Partitioning times (in ms) for the processor speed range of 1–8 for the volume
rendering dataset

CCP instance Heuristics Exact algorithms
Name P RB MP DP+ NC + BID EBS

Blunt 32 0.37 0.36 1 0.58 0.52 0.49
64 0.39 0.38 1 0.85 0.84 0.66

128 0.44 0.42 2 1.39 1.91 1.05
256 0.51 0.47 4 2.42 4.91 1.74
512 0.64 0.57 14 4.68 13.97 3.28

1024 0.89 0.76 54 8.67 43.05 6.45
2048 1.37 1.12 201 15.27 97.54 12.09

Comb 32 0.62 0.61 1 0.85 0.80 0.75
64 0.65 0.64 1 1.15 1.17 0.96

128 0.69 0.67 2 1.68 2.40 1.37
256 0.77 0.74 5 2.87 6.04 2.13
512 0.91 0.84 16 4.84 16.92 3.74

1024 1.17 1.04 59 9.44 47.19 7.08
2048 1.68 1.42 230 17.86 130.51 13.30

Post 32 1.12 1.11 2 1.36 1.30 1.26
64 1.15 1.14 2 1.68 1.69 1.46

128 1.20 1.18 3 2.26 2.91 1.88
256 1.29 1.26 6 3.52 6.54 2.82
512 1.45 1.38 16 5.91 16.95 4.51

1024 1.73 1.59 55 10.36 44.10 7.52
2048 2.25 1.99 205 20.02 114.60 14.81

Given a chain of tasks T = 〈t1, t2, . . . , tN〉, a weight wi ∈ Z+ for
each ti ∈ T , a set of processors P = {P1, P2, . . . , PP} with P < N ,
an execution speed ep ∈ Z+ for each Pp ∈ P , and a bound B, decide
if there exists a mapping M of T onto P such that C(M) ≤ B.

Theorem 5.1. The CP problem for heterogeneous systems is NP-
complete.

Proof. We use reduction from the 3-Partition (3P) problem. A
pseudo-polynomial transformation suffices, because 3P problem
is NP-complete in the strong sense (i.e., there is no pseudo-
polynomial time algorithm for the problem unless P = NP). The
3P problem is stated in [7] as follows.

Given a finite set A of 3m elements, a bound B ∈ Z+, and a cost
ci ∈ Z+ for each ai ∈ A, where

∑
ai∈A ci = mB and each ci satisfies

B/4 < ci < B/2, decide if A can be partitioned into m disjoint sets
S1, S2, . . . , Sm such that

∑
ai∈Sp ci = B for p = 1, 2, . . . ,m.

For a given instance of the 3P problem, the corresponding CP
problem is constructed as follows.

• The number of tasks N is m(B + 1) − 1. The weight of every
(B + 1)st task is B, (i.e., wi = B for i mod (B + 1) = 0), and the
weights of all other tasks are 1.

• The number of processors P is 4m−1. The firstm−1 processors
have execution speeds of B, (i.e., ep = B for p = 1, 2, . . . ,m−1),
and the remaining processors have execution speeds equal to
the costs of items in the 3P problem (i.e., ep = cp−m+1 for
p = m, . . . , 4m − 1).

We claim that there is a solution to the 3P problem if and only
if there is a mapping M with cost C(M) = 1 for the CP problem.
The following observations constitute the basis for our proof.

• The processors with execution speeds of B must be mapped to
tasks with weight B to have a solution with cost C(M) = 1,
because the execution speeds of all other processors are ≤ B/2.
These processors (tasks) serve as divider processors (tasks).

• The total weight of the chain is 3m+ (m− 1)B = (B+ 3)m− B.
The sum of execution speeds of all processors is also (m−1)B+

3m = (B + 3)m − B. This forces each processor to be assigned
a load with value equal to its execution speed to achieve a
mapping with cost C(M) = 1.
As noted above, the divider processors should be assigned to
the divider tasks. Between two successive divider tasks there is a
subchain of B unit-weight tasks with total weight B, which must
be assigned to a subset of processors with total execution speed
B. Since there are m such subchains, the same grouping of the
processors is also valid for grouping ci values in the 3P problem.
Thus the 3P problem can be reduced to the CP problem, proving
the CP problem is NP-hard.

The cost of a given mapping can be computed in polynomial
time, thus the problem is in NP. Thus we can conclude that
the chain partitioning problem for heterogeneous systems is NP-
Complete. �

This complexity shows that we need to resort to heuristics
for practical solutions to the CP problem. With the nearly perfect
balance results and extremely fast runtimes as we will present
in Section 6.2, CCP algorithms can serve as good heuristics for
the CP problem. We tried this approach, by finding optimal CCP
solutions for randomly ordered processor chains of a CP instance.
We observed that the sensitivity to processor ordering is quite low.
You can find a description of these studies in Section 6.3. We also
tried improvement techniques, where we swapped processors in
the chain to decrease the bottleneck value, but the improvements
were modest and could hardly compensate for the increase in
runtimes.

6. Experimental results

6.1. Experimental setup

The 1D task arrays used in both CCP and CP experiments were
derived from two different applications: image-space-parallel
direct volume rendering and row-parallel sparse matrix vector
multiplication.

Direct volume rendering experiments are performed on three
curvilinear datasets fromNASAAmes Research Center [13], namely
Blunt Fin (blunt), Combustion Chamber (comb), and Oxygen Post
(post). These datasets are processed using the tetrahedralization
techniques described in [8,18] to produce three-dimensional
(3D) unstructured volumetric datasets. The two-dimensional (2D)
workload arrays are constructed by projecting 3D volumetric
datasets onto 2D screens of resolution 256 × 256 using the
workload criteria of image-space-parallel direct volume rendering
algorithm described in [1]. Here, the rendering operations
associated with the individual pixels of the screen constitute the
computational tasks of the application. The resulting 2D task array
is then mapped to a 1D task array using Hilbert space-filling-curve
traversal [15]. The workload distributions of the 2D task arrays are
visualized in Fig. 7, where darker areas represent more weighted
tasks. The histograms at the bottom of the 2D pictures show the
weight distributions of the resulting 1D task arrays.

In the sparse matrix experiments, we consider rowwise
block partitioning of the matrices obtained from University of
Florida Sparse Matrix Collection [4]. In row-parallel matrix vector
multiplies, the rows correspond to the tasks to be partitioned,
and the number of nonzeros in each row is the weight of
the corresponding task. The nonzero distributions of the sparse
matrices are shown in Fig. 8. The histograms on the right sides of
the visualizations represent the number of nonzeros in each row.

Table 2 displays the properties of the 1D task chains used in
our experiments. In the volume rendering dataset, the number of
tasks is considerably less than the screen resolution, because zero-
weight tasks are omitted. In the sparse matrix dataset, the number
of tasks is equal to the number of rows.

In both CCP and CP experiments, P = 32, 64, 128, 256, 512,
1024, and 2048-way partitioning of the 1D task arrays were
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Table 8
Partitioning times (in ms) for the processor speed range of 1–8 for the sparse matrix dataset

CCP instance Heuristics Exact algorithms
Name P RB MP DP+ NC + BID EBS

g7jac050sc 32 0.31 0.30 1 0.54 0.56 0.46
64 0.33 0.32 1 0.83 1.08 0.65

128 0.37 0.35 4 1.31 2.61 1.04
256 0.44 0.40 13 2.47 7.23 1.80
512 0.56 0.49 54 4.51 18.88 3.27

1024 0.80 0.67 234 8.65 48.90 6.07
2048 1.27 1.02 1730 15.06 100.99 11.96

Language 32 7.80 7.80 17 8.19 9.19 8.05
64 7.84 7.83 22 8.71 14.02 8.47

128 7.91 7.89 56 9.88 32.63 9.33
256 8.05 8.01 1999 11.27 8.25 10.63
512 8.28 8.21 6298 12.38 8.55 11.73

1024 8.70 8.57 15839 15.96 9.14 16.13
2048 9.47 9.20 33199 21.82 10.29 20.59

mark3jac060 32 0.47 0.46 1 0.69 0.62 0.60
64 0.49 0.48 1 0.96 0.94 0.76

128 0.54 0.52 2 1.48 1.73 1.09
256 0.62 0.58 7 2.43 3.55 1.78
512 0.76 0.69 23 4.35 7.95 3.04

1024 1.01 0.88 90 7.81 19.96 5.95
2048 1.50 1.25 371 15.91 45.62 11.39

Stanford 32 4.98 4.97 26 5.51 25.10 5.38
64 5.01 5.00 79 5.99 82.71 5.85

128 5.08 5.06 841 7.09 437.39 6.67
256 5.20 5.16 3989 8.42 3022.05 7.80
512 5.41 5.34 9667 10.77 7524.42 10.08

1024 5.79 5.65 22472 15.55 16580.61 14.83
2048 6.48 6.20 49112 25.02 34629.44 23.78

Stanford_Berkeley 32 19.15 19.15 53 19.72 47.08 19.63
64 19.20 19.18 154 20.60 140.26 20.17

128 19.27 19.25 558 22.27 460.82 21.16
256 19.39 19.35 4273 24.34 3722.02 22.24
512 19.61 19.55 22065 27.82 10742.26 24.53

1024 20.02 19.89 47607 34.03 22496.33 28.87
2048 20.78 20.50 100548 46.18 46014.22 37.61

torso1 32 2.12 2.11 5 2.46 4.29 2.38
64 2.14 2.13 9 2.83 8.80 2.66

128 2.18 2.16 22 3.55 25.10 3.22
256 2.26 2.22 83 5.03 76.26 4.45
512 2.40 2.33 360 7.61 201.48 6.69

1024 2.68 2.56 1566 13.00 522.08 10.65
2048 3.24 2.98 6933 23.04 783.22 18.39
Table 9
Partitioning time averages (over P) of the exact CCP algorithms normalized with respect to those of the RB heuristic for different processor speed ranges

P 1–4 1–8 1–16
DP+ NC + BID EBS DP+ NC + BID EBS DP+ 33NC + BID EBS

Volume rendering dataset
32 2 1.38 1.28 1.20 2 1.38 1.27 1.21 2 1.40 1.30 1.22
64 2 1.78 1.80 1.44 2 1.76 1.77 1.45 2 1.80 1.88 1.47

128 3 2.42 3.28 1.89 3 2.44 3.33 1.94 3 2.53 3.70 1.96
256 6 3.63 6.94 2.63 6 3.62 7.22 2.73 6 3.65 8.05 2.75
512 15 5.32 15.46 3.79 17 5.45 16.90 3.96 17 5.59 19.07 4.08

1024 43 7.66 32.01 5.21 46 7.77 37.55 5.79 47 7.78 43.59 5.87
2048 114 10.18 53.81 6.95 123 10.15 65.70 7.68 129 10.73 86.03 7.75
Sparse matrix dataset

32 3 1.25 2.33 1.15 3 1.26 2.30 1.18 3 1.28 2.67 1.17
64 6 1.50 5.34 1.31 6 1.52 5.77 1.34 6 1.54 5.90 1.36

128 34 1.93 24.89 1.59 37 1.93 22.48 1.66 35 2.01 23.37 1.69
256 212 2.58 122.47 2.01 217 2.69 136.83 2.17 219 2.68 147.12 2.12
512 650 3.51 277.96 2.64 649 3.65 340.06 2.89 638 3.75 389.97 2.90

1024 1422 4.69 565.27 3.51 1464 4.94 701.30 3.92 1471 5.07 812.36 3.89
2048 3136 6.02 1051.74 4.47 3243 6.36 1301.49 5.04 3234 6.70 1550.64 5.10
performed.We experimentedwith different variances of processor
speeds, where the processors speeds were chosen uniformly
distributed in the 1–4, 1–8, and 1–16 ranges.

In the experiments, the P-way partitioning of a given task
chain for a given processor speed range constitutes a partitioning
instance. As randomization is used in determining processor
speeds, each task chainwas partitioned onto 20different uniformly
random processor chains/sets for each speed range, and average
performance results are reported for each partitioning instance.

The solution qualities are represented by percent load imbal-
ance values. The percent load imbalance of a partition is computed
as 100 × (B − B∗)/B∗, where B denotes the bottleneck value of the
respective partition.
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Table 10
Geometric averages (over P) of percent load imbalance values for R randomly ordered processor chains for the volume rendering dataset with the processor speed range
of 1–8

P R = 10 R = 100 R = 1000 R = 10 000
Best Avg Best Avg Best Avg Best Avg

32 0.042 0.050 0.038 0.049 0.036 0.049 0.033 0.048
64 0.097 0.111 0.091 0.112 0.082 0.112 0.077 0.112

128 0.199 0.217 0.189 0.219 0.176 0.218 0.172 0.219
256 0.402 0.427 0.391 0.430 0.377 0.428 0.370 0.428
512 0.852 0.870 0.823 0.870 0.807 0.868 0.791 0.868

1024 1.787 1.849 1.750 1.856 1.727 1.855 1.719 1.855
2048 3.337 3.414 3.245 3.401 3.159 3.402 3.150 3.401
Table 11
Geometric averages (over P) of percent load imbalance values for R randomly ordered processor chains for the sparse matrix dataset with the processor speed range of 1–8

P R = 10 R = 100 R = 1000 R = 10 000
Best Avg Best Avg Best Avg Best Avg

32 0.133 0.483 0.104 0.656 0.068 0.588 0.057 0.534
64 0.460 0.906 0.313 0.835 0.257 0.924 0.222 0.935

128 1.304 2.526 1.216 2.484 1.124 2.462 1.020 2.573
256 10.843 11.411 10.291 11.420 10.127 11.427 9.958 11.433
512 31.153 31.694 29.385 31.776 29.078 31.747 28.922 31.735

1024 70.403 71.296 69.160 71.540 68.472 71.530 67.855 71.521
2048 147.792 150.082 146.616 150.360 143.709 150.191 142.917 150.283
6.2. CCP experiments

The proposed CCP algorithms were implemented in Java
language. Tables 3–6 compare the solution qualities of heuristics,
with respect to those of the optimal partitions obtained by the
exact algorithms. In these tables, OPT values refer to the optimal
load imbalance values.

Tables 3 and 4, respectively, display the percent load imbalance
values obtained in mapping the volume rendering and sparse
matrix task chains onto processor chainswith 1–8 execution speed
range. As seen in these two tables, RB performs much better than
MP. Out of 63 partitioning instances, RB found better solutions than
MP in all but one instance.

As seen in Tables 3 and 4, in general, the quality gap between
exact algorithms and heuristics increases with increasing number
of processors. For instance, in 2048-waypartitioning of thetorso1
matrix, best heuristic finds a solutionwith 252.44% load imbalance,
whichmeans a processor is loadedmore than 3.5 times the average
load, causing a slowdown, as the number of processors increase.
An optimal solution however, will have a load imbalance value of
27.61%, providing scalability to thousands of processors.

Tables 5 and 6 display the variation of load balancing
performances of heuristics and exact algorithms with varying
processor speed ranges for the volume rendering and sparsematrix
task chains, respectively. Since RB outperformsMP, only the results
for the RB heuristic are displayed in these two tables. The bottom
parts of these two tables show the geometric averages of the
percent load imbalance values over the number of processors.

As seen in Tables 5 and 6, in general, the performance gap
between heuristics and exact algorithms decrease with decreasing
processor speed range. However, there exists considerable quality
difference between the heuristics and exact algorithms even for
the smallest 1–4 speed range.

In constructing the processor chains for the experiments, in
addition to the random processor ordering, we also investigated
different orderings of the processors having the same speed. In
this context, we experimented with the cases where processors
having the same speed ordered consecutively, assuming that such
processors belong to the same homogenous cluster, and hence
they are naturally adjacent to each other in the processor chain.
We did not observe a considerable sensitivity of the relative load
balancing performance between heuristics and exact algorithms to
the ordering of processors having the same speed.

Tables 7–9 display the execution times of the proposed CCP
algorithms on a workstation equipped with a 3 GHz Pentium-
IV and 1 GB of memory. In these tables, NC+, BID, and EBS
respectively represent theNICOL+, BIDDING, and EXACT-BISECTION
algorithms presented in Figs. 4–6.

Tables 7 and 8 respectively display the execution times of the
CCP algorithms for mapping the volume rendering and sparse
matrix task chains onto processor chains with 1–8 execution
speed range. In these two tables, relative performance comparison
of heuristics shows that MP is slightly faster than RB. Since RB
outperforms MP in terms of solution quality as shown in Tables 3
and 4, these results reveal the superiority of RB to MP.

In Tables 7 and 8, relative performances of exact CCP algorithms
show that both NICOL+ and EBS are an order of magnitude faster
than DP+ and BID for both volume rendering and sparse matrix
datasets. As also seen in these two tables, EBS is slightly faster than
NICOL+.

It is worth highlighting that for small to medium concurrency,
the time it takes EBS and NICOL+ algorithms to find optimal
solutions is less than three times the time of the fastest heuristic.
More precisely, on overall average, EBS takes only 147% more
time than the fastest heuristic for 256-way partitioning. On
the other hand, at higher number of processors, the solution
qualities of heuristics degrade significantly: on overall average,
optimal solutions provide 5.35, 5.47 and 6.00 times better load
imbalance values than the best heuristic for 512, 1024 and 2048-
way partitionings, respectively. According the these experimental
results, we recommend the use of exact CCP algorithms instead of
heuristics for heterogeneous systems.

Table 9 displays the variation of running time performances
of the CCP algorithms with varying processor speed ranges for
the volume rendering and sparse matrix task chains. For a better
performance comparison, execution times of the algorithms were
normalized with respect to those of the RB heuristic, and averages
of these normalized values over P are presented in the table. We
shouldmention here that the running time of the RB heuristic does
not change with varying processor speed range, as expected. As
seen in Table 9, notable performance variation occurs only for the
BIDDING algorithm whose running time generally increases with
increasing processor speed range.
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Table 12
Best percent load imbalance values for R = 10 000 randomly ordered processor chains with different processor speed ranges

Volume rendering dataset Sparse matrix dataset
CCP instance 1–4 1–8 1–16 CCP instance 1–4 1–8 1–16
Name P Name P

Blunt 32 0.029 0.053 0.051 g7jac050sc 32 0.154 0.146 0.092
64 0.125 0.134 0.117 64 0.390 0.366 0.371

128 0.207 0.267 0.241 128 1.003 1.016 0.994
256 0.628 0.559 0.528 256 2.402 2.226 2.439
512 1.055 1.193 1.157 512 5.493 5.497 5.297

1024 2.300 2.992 2.543 1024 13.187 11.727 11.829
2048 5.000 4.554 4.938 2048 28.115 28.269 26.974

Comb 32 0.037 0.034 0.034 language 32 0.004 0.003 0.004
64 0.076 0.075 0.079 64 0.011 0.010 0.013

128 0.183 0.180 0.179 128 0.052 0.050 0.040
256 0.377 0.387 0.380 256 55.560 34.304 24.151
512 0.818 0.814 0.812 512 206.845 168.371 151.509

1024 1.707 1.662 1.694 1024 511.078 443.036 407.589
2048 3.561 3.508 3.522 2048 1122.157 977.521 915.654

Post 32 0.020 0.020 0.020 mark3jac060 32 0.033 0.039 0.041
64 0.048 0.046 0.047 64 0.095 0.104 0.103

128 0.109 0.107 0.108 128 0.245 0.232 0.245
256 0.233 0.234 0.230 256 0.536 0.547 0.544
512 0.466 0.510 0.479 512 1.173 1.154 1.215

1024 0.948 1.022 0.988 1024 2.501 2.474 2.504
2048 2.240 1.957 2.043 2048 5.516 5.255 5.225

Stanford 32 0.239 0.127 0.128
64 0.960 0.889 0.525

128 35.643 12.897 14.879
256 173.373 136.019 118.176
512 439.233 371.620 341.987

1024 973.874 854.300 792.008
2048 2047.748 1793.575 1684.852

Stanford_Berkeley 32 0.047 0.063 0.073
64 0.740 0.554 0.666

128 2.831 3.307 2.843
256 80.192 55.570 43.809
512 255.431 210.865 191.333

1024 607.837 529.020 487.961
2048 1315.674 1148.137 1076.473

torso1 32 0.315 0.229 0.307
64 0.771 0.639 0.677

128 1.112 2.240 1.538
256 1.890 3.087 3.004
512 4.859 6.996 8.198

1024 12.046 16.806 15.439
2048 38.975 28.495 31.079
6.3. CP experiments

Tables 10 and 11 display the results of our experiments to
show the sensitivity of the solution quality of CP problem instances
to the processor orderings for the processor speed range of 1–8.
In these experiments, we find the optimal CCP solutions for R
randomly ordered processor chains of a CP instance, and display
geometric averages of the best and average load imbalance values
over number of processors. As seen in the tables, for a fixed P , the
average imbalance values almost remain the same for different
values of R. Although the best imbalance values decrease with
increasing R, the decreases are quite small, especially for large P .
Moreover, for a fixed R, the relative difference between the best
and average imbalance values decreases with increasing P .

These experimental findings show that processor ordering has
only a minor effect on solution quality. This is expected, since
the variance among processor speeds is low, unlike the variance
among task weights. Therefore, using an exact CCP algorithm on
a number of randomly permuted processor chains can serve as an
effective heuristic for the CP problem.

Table 12 displays the results of our experiments, to show the
sensitivity of the solution quality of CP problem instances to the
processor speed range. In these experiments, for each CP instance,
we find the optimal CCP solutions for R = 10 000 randomly
ordered processor chains, and display the best load imbalance
value. As seen in Table 12, we do not observe a considerable
sensitivity of the solution quality of the CP problem instances
to the processor speed range. Notable sensitivity is observed
only for the language, Stanford, and Stanford_Berkeley
sparse matrix datasets, which have high task weight variation (i.e.,
large wmax/wavg value). In these datasets, load imbalance values
decrease with increasing processor speed range, which possibly,
because the adverse effect of tasks with large weight on load
imbalance can be more easily resolved by mapping them to the
processors with larger execution speed.

7. Conclusions

We studied the problem of one-dimensional partitioning of
nonuniform workload arrays with optimal load balancing for
heterogeneous systems. We investigated two cases: chain-on-
chain partitioning, where a chain of tasks is partitioned onto
a chain of processors; and chain partitioning, where the task
chain is partitioned onto a set of processors (i.e., permutation
of the processors is allowed). We showed that chain-on-chain
partitioning algorithms for homogenous systems can be revised
to solve this partitioning problem for heterogeneous systems,
without altering computational complexities of these algorithms.
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We proved that the chain partitioning problem is NP-complete,
and empirically showed that exact CCP algorithms can serve as an
effective heuristic, for the CP problem. Our experiments proved the
effectiveness of our techniques, as the exact algorithmsworkmuch
better than heuristics, and balanced work decompositions can be
achieved even for high numbers of processors.

8. Availability

The algorithms proposed in this work are implemented in Java
language and made publicly available at http://www.cs.bilkent.
edu.tr/∼tabak/hetccp/.
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